An alternative route for the synthesis of tris(trifluoromethyl)bismuth, $Bi(CF_3)_3$

Dieter Naumann*, Robert Schlengermann and Wieland Tyrra

Institut für Anorganische Chemie, Universität Köln, Greinstr. 6, D-50939 Köln (Germany)

(Received December 18, 1992; accepted February 10, 1993)

Abstract

Bi $(CF_3)_3$ can be prepared easily in c. 70% yield from the metathesis reaction of $ZnBr(CF_3) \cdot 2CH_3CN$ with BiCl₃.

Introduction

In our recent investigations concerning the chemistry of organobismuth derivatives containing perfluoroalkyl groups, Bi(CF₃)₃ turned out to be a useful tool for the selective transfer of trifluoromethyl groups either to inorganic [1] or organic [2] derivatives. The preparative route for obtaining Bi(CF₃)₃ via the metathesis reactions of Cd(CF₃)₂ complexes with BiCl₃ or BiBr₃ [3] has the disadvantage that highly toxic cadmium derivatives are involved and have finally to be disposed of. In this paper we describe the synthesis of Bi(CF₃)₃ by an alternative route from BiCl₃ and ZnBr(CF₃) · 2CH₃CN.

Experimental

BiCl₃ was purchased from Riedel-de Haën, Seelze (Germany) and used as received. $ZnBr(CF_3) \cdot 2CH_3CN$ was prepared from the reaction of elemental zinc with CBrF₃ [4]. ¹⁹F NMR spectra were recorded on a Bruker AC 200 spectrometer at 188.3 MHz with CCl₃F as an external standard. All analytical data are in accordance with those reported in ref. 3.

In a dry nitrogen atmosphere, 25.3 g (85.5 mmol) ZnBr(CF₃)·2CH₃CN were suspended in 50 ml of carefully dried dichloromethane at ambient temperature. The reaction vessel was equipped with a bubble counter to allow the gaseous by-products (CHClF₂, CHBrF₂) to leak. The suspension was cooled to 0 °C when 3.0 g (9.5 mmol) BiCl₃ was added to the cooled solution. The reaction temperature was raised to 30 °C.

The reaction may be monitored by ¹⁹F NMR spectroscopy. After a reaction time of 14 d, unreacted ZnBr(CF₃)·2CH₃CN could no longer be detected. Low intensity signals corresponding to Bi(CF₃)₂Cl with traces of Zn(C₂F₅) derivatives, CHClF₂ and CHBrF₂ could be detected in the ¹⁹F NMR spectra. These compounds are by-products of parallel carbenoid reactions.

The red-brown reaction mixture was filtered via a glass frit and the solid residue washed several times with small portions of dichloromethane.

Using a small distillation apparatus equipped with a Vigreux column, CH_2Cl_2 and other readily volatile compounds were slowly distilled off at standard pressure (c. 1 drop s⁻¹) with the bath temperature not exceeding c. 75 °C. Under these conditions, Bi(CF₃)₃ and some acetonitrile [from ZnBr(CF₃) · 2CH₃CN] as well as ZnCl₂, ZnBr₂ and small amounts of Zn(C₂F₅) compounds remained in the distillation residue. Using other conditions, Bi(CF₃)₃ was carried over.

This mixture was distilled for a second time under reduced pressure $(2 \times 10^{-3} \text{ hPa})$ with a bath temperature of 75 °C which was increased over a period of 1 h to a maximum of 90 °C. According to our experience, it is important to use an extremely short condensing tube to avoid poor yields. After distilling for an additional hour, Bi(CF₃)₃ and CH₃CN could be completely removed from the remaining zinc derivatives. The condensate contained only Bi(CF₃)₃ and CH₃CN, and was free from other impurities.

A further vacuum condensation with a bath temperature of 0 °C allowed separation of CH₃CN from Bi(CF₃)₃. The product obtained contained less than 5% acetonitrile; the yield was c. 70% (based on BiCl₃).

It is noteworthy that small amounts of CH₃CN stabilize $Bi(CF_3)_3$; absolutely pure $Bi(CF_3)_3$ decomposes within a few days even at temperatures below 0 °C, but traces of CH₃CN allow storage of $Bi(CF_3)_3$ for several weeks even at room temperature.

^{*}Author to whom correspondence should be addressed.

^{0022-1139/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0022-1139(93)02899-P

Results and discussion

This preparative-scale route to $Bi(CF_3)_3$ provides an alternative to the previously described method [3] avoiding toxic cadmium reagents. According to the equation

 $2BiCl_3 + 6ZnBr(CF_3) \cdot 2CH_3CN \longrightarrow$

$$2Bi(CF_3)_3 + 3ZnCl_2 + 3ZnBr_2 + 12CH_3CN$$

the desired product can be obtained in c. 70% yield with the formation of ecologically less damaging zinc halides.

Traces of trifluoromethylbismuth halides, which may be present in the reaction mixture, dismutate on heating to give $Bi(CF_3)_3$ and $BiCl_3$ in a similar manner to mixed aryl(trifluoromethyl)bismuth derivatives [5].

The large amounts of gaseous by-products detected are the subject of on-going investigation.

Acknowledgements

Financial support by the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- 1 W. Tyrra and D. Naumann, Can. J. Chem., 67 (1989) 1949.
- 2 S.V. Pasenok, N.V. Kirij, Yu. L. Yagupolskii, D. Naumann and W. Tyrra, *1st Ukrainian-German Symp. Fluorine Chem.*, Odessa (Ukraine), Aug. 31-Sept. 5, 1992, Abs. P14.
- 3 D. Naumann and W. Tyrra, J. Organomet. Chem., 334 (1987) 323.
- 4 D. Naumann, W. Tyrra, B. Kock, W. Rudolph and B. Wilkes, Eur. Pat. 291 860; [Chem. Abs., 110 (1989) P156515x]
- 5 S. Pasenok, D. Naumann and W. Tyrra, J. Organomet. Chem., 417 (1991) C47.